Gestão & Produção
Gestão & Produção
Artigo Original

A novel technological performance measurement indicator: a smart manufacturing approach

Um novo indicador de medição de desempenho tecnológico: uma abordagem de fabricação inteligente

Luisa Maria Tumbajoy Cardona; Mariela Muñoz-Añasco

Downloads: 0
Views: 78


Abstract: The implementation of digital manufacturing technologies (DMTs) represents the beginning of transforming a manufacturing system towards a smart manufacturing system (SMS). Assessing the performance of the DMTs implemented is essential to meet the objectives in a SMS and allows identifying their usefulness. However, estimating this performance is a challenging task due to the heterogeneous characteristics of the DMTs, such as the origin of information, capacity, connectivity, etc. Although some SMS performance measurement metrics are known, none are intended to identify the performance of DMTs. This article follows a methodology for the construction of technological performance indicators and proposes a novel indicator based on the individual characteristics of the DMTs and the smart factory concept of interoperability. The proposed indicator allows approaching the behavior of one or multiple DMTs implemented simultaneously and introduces a quantifiable measurement that can be applied to any industrial process. It is noteworthy, that such an indicator is not present in the literature and may be of great interest to enterprises currently implementing DMTs related to SMS. The applicability of the indicator considering multiple DMTs is validated through an illustrative test case.


Digital manufacturing technologies, Smart manufacturing, Indicator, Interoperability, Measurement


Resumo: A implementação de tecnologias de fabricação digital (DMTs) representa o início da transformação de um sistema de fabricação em um sistema de fabricação inteligente (SMS). Avaliar o desempenho dos DMTs implementados é essencial para cumprir os objetivos de um SMS e permite identificar a sua utilidade. No entanto, estimar esse desempenho é uma tarefa desafiadora devido às características heterogêneas dos DMTs, por exemplo, origem da informação, capacidade, conectividade etc. Embora algumas métricas de medição de desempenho de SMS sejam conhecidas, nenhuma é específica para identificar o desempenho dos DMTs. Este artigo segue uma metodologia para a construção de indicadores de desempenho tecnológico e propõe um novo indicador baseado nas características individuais dos DMTs e no conceito de interoperabilidade de fábrica inteligente. O indicador proposto permite abordar o comportamento de um ou vários DMTs implementados simultaneamente e apresenta uma medição quantificável que pode ser aplicada a qualquer processo industrial. É imortante destacar que tal indicador não está presente na literatura e pode ser de grande interesse para as empresas que estáo atualmente implementam DMTs relacionadas ao SMS. A aplicabilidade do indicador considerando vários DMTs é validada através de um caso de teste ilustrativo.


Tecnologias de fabricação digital, Fabricação inteligente, Indicador, Interoperabilidade, Medição.


Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2018). Towards Industry 4.0: mapping digital technologies for supply chain management-marketing integration. Business Process Management Journal, 25(2), 323-346.

Bigliardi, B., Bottani, E., & Casella, G. (2020). Enabling technologies, application areas and impact of industry 4.0: a bibliographic analysis. Procedia Manufacturing, 42, 322-326.

Büchi, G., Cugno, M., & Castagnoli, R. (2020). Smart factory performance and Industry 4.0. Technological Forecasting and Social Change, 150, 119790.

Burns, T., Cosgrove, J., & Doyle, F. (2019). A review of interoperability standards for Industry 4.0. Procedia Manufacturing, 38, 646-653.

Cappa, F., Oriani, R., Peruffo, E., & McCarthy, I. (2021). Big data for creating and capturing value in the digitalized environment: unpacking the effects of volume, variety, and veracity on firm performance. Journal of Product Innovation Management, 38(1), 49-67.

Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659.

Cugno, M., Castagnoli, R., & Büchi, G. (2021). Openness to Industry 4.0 and performance: the impact of barriers and incentives. Technological Forecasting and Social Change, 168, 120756.

Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383-394.

Ferrari, P., Sisinni, E., Brandão, D., & Rocha, M. (2017, September). Evaluation of communication latency in industrial IoT applications. In 2017 IEEE International Workshop on Measurement and Networking (M&N) (pp. 1-6). Naples, Italy: IEEE.

Frederico, G. F., Garza-Reyes, J. A., Kumar, A., & Kumar, V. (2021). Performance measurement for supply chains in the Industry 4.0 era: a balanced scorecard approach. International Journal of Productivity and Performance Management, 70(4), 789-807.

Geraci, A. (1991). IEEE standard computer dictionary: compilation of IEEE standard computer glossaries. New York, USA: IEEE Press.

Guédria, W., Naudet, Y., & Chen, D. (2015). Maturity model for enterprise interoperability. Enterprise Information Systems, 9(1), 1-28.

Hu, M., Luo, X., Chen, J., Lee, Y. C., Zhou, Y., & Wu, D. (2021). Virtual reality: a survey of enabling technologies and its applications in IoT. Journal of Network and Computer Applications, 178, 102970.

Ibarguen-Valverde, J. L., Angulo-López, J. E., Rodríguez-Salcedo, J., & Prías-Caicedo, O. (2017). Indicators of energetic performance: a path to sustainability.“A case study of a high-roasting industry of coffee. Dyna, 84(203), 184-191.

Kamble, S. S., Gunasekaran, A., Ghadge, A., & Raut, R. (2020). A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs: a review and empirical investigation. International Journal of Production Economics, 229, 107853.

Klovienė, L., & Uosytė, I. (2019). Development of performance measurement system in the context of industry 4.0: a case study. Inžinerinė Ekonomika, 30(4), 472-482.

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1-10.

Lucato, W. C., Pacchini, A. P. T., Facchini, F., & Mummolo, G. (2019). Model to evaluate the Industry 4.0 readiness degree in Industrial Companies. IFAC-PapersOnLine, 52(13), 1808-1813.

Mabkhot, M., Ferreira, P., Maffei, A., Podržaj, P., Mądziel, M., Antonelli, D., & Lohse, N. (2021). Mapping industry 4.0 enabling technologies into united nations sustainability development goals. Sustainability, 13(5), 2560.

Nara, E. O. B., da Costa, M. B., Baierle, I. C., Schaefer, J. L., Benitez, G. B., do Santos, L. M. A. L., & Benitez, L. B. (2021). Expected impact of industry 4.0 technologies on sustainable development: a study in the context of Brazil’s plastic industry. Sustainable Production and Consumption, 25, 102-122.

Neghab, A. P., Etienne, A., Kleiner, M., & Roucoules, L. (2015). Performance evaluation of collaboration in the design process: using interoperability measurement. Computers in Industry, 72, 14-26.

Pedone, G., & Mezgár, I. (2018). Model similarity evidence and interoperability affinity in cloud-ready Industry 4.0 technologies. Computers in Industry, 100, 278-286.

Rajan, A. P. (2013). Evolution of cloud storage as cloud computing infrastructure service. Retrieved in 2023, April 5, from

Rubio, J. E., Roman, R., & Lopez, J. (2018). Analysis of cybersecurity threats in industry 4.0: the case of intrusion detection. In Critical Information Infrastructures Security: 12th International Conference, CRITIS 2017 (pp. 119-130). Lucca, Italy: Springer International Publishing.

Saturno, M., Ramos, L. F. P., Polato, F., Deschamps, F., & Loures, E. D. F. R. (2017). Evaluation of interoperability between automation systems using multi-criteria methods. Procedia Manufacturing, 11, 1837-1845.

Silva, J. F. D., Silva, F. L. D., Silva, D. O. D., Rocha, L. A. O., & Ritter, Á. M. (2022). Decision making in the process of choosing and deploying industry 4.0 technologies. Gestão & Produção, 29, 29.

Society fof Automotive Engineers - SAE. (1999). J4000: Identification and measurement of best practice in implementation of lean operation. Warrendale, PA: SAE.

Sun, S., Zheng, X., Villalba-Díez, J., & Ordieres-Meré, J. (2020). Data handling in industry 4.0: interoperability based on distributed ledger technology. Sensors (Basel), 20(11), 3046. PMid:32471234.

Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. International Scholarly Research Notices, 2012, 208760.

Wu, D. (2009). Measuring performance in small and medium enterprises in the information and communication technology industries (Doctoral dissertation). RMIT University, Australia.

Yahia, E., Aubry, A., & Panetto, H. (2012). Formal measures for semantic interoperability assessment in cooperative enterprise information systems. Computers in Industry, 63(5), 443-457.

Zeid, A., Sundaram, S., Moghaddam, M., Kamarthi, S., & Marion, T. (2019). Interoperability in smart manufacturing: research challenges. Machines, 7(2), 21.

64cd020ca953957b1063ac76 gp Articles

Gest. Prod.

Share this page
Page Sections