Gestão & Produção
https://gestaoeproducao.com/article/doi/10.1590/1806-9649-2023v30e3423
Gestão & Produção
Original Article

Assessment of safety indicators in high-risk industries in the context of Resilience Engineering: a systematic literature review

Avaliação de indicadores de segurança em indústrias de altor risco no contexto da Engenharia de Resiliência: uma revisão sistemática da literatura

Marcelo Praxedes Larrea Ilhanez; Elmo Rodrigues da Silva; Ubirajara Aluizio de Oliveira Mattos; Karoline Pinheiro Frankenfeld; Luiz Claudio Silva

Downloads: 11
Views: 585

Abstract

Abstract: Measuring organizational safety performance is critical in managing production systems. This practice allows decisions to be made objectively and based on data analysis. In the study of resilience engineering applied to the safety of production systems, there is interest on the part of the scientific community and companies in identifying, in the different processes of organizations, indicators to measure resilient performance in safety management. This study aims to discuss and analyze qualitative and quantitative methods to identify the potential for resilience in safety management and support new research on resilience engineering applied to safety performance management in industries with high technological risks. The methodology used included a systematic review of national and international literature from the last ten years. The results obtained provide a critical analysis of the methods used to define safety indicators applied through resilience engineering to occupational safety management in organizations that deal with high technological risks. Qualitative methods for generating safety indicators from the perspective of Resilience Engineering have proven to be a better way, as they apply the concepts of Safety I and Safety II and early warning indicators.

Keywords

Resilience Engineering, Safety indicators, High technological risk

Resumo

Resumo: Medir o desempenho de segurança nas organizações é um elemento crítico na gestão de sistemas de produção. Essa prática permite que as decisões sejam tomadas de forma objetiva e com base na análise de dados. No estudo da engenharia de resiliência aplicada à segurança dos sistemas produtivos, há interesse por parte da comunidade científica e das empresas em identificar, nos diferentes processos das organizações, indicadores para medir o desempenho resiliente na gestão da segurança. Este estudo tem como objetivo discutir e analisar métodos qualitativos e quantitativos para identificar o potencial de resiliência na gestão de segurança e subsidiar novas pesquisas sobre engenharia de resiliência aplicada à gestão de desempenho de segurança em indústrias com altos riscos tecnológicos. A metodologia utilizada incluiu uma revisão sistemática da literatura nacional e internacional dos últimos dez anos. Os resultados obtidos fornecem uma análise crítica dos métodos utilizados para definir indicadores de segurança aplicados por meio da engenharia de resiliência à gestão da segurança do trabalho em organizações que lidam com altos riscos tecnológicos. Métodos qualitativos para geração de indicadores de segurança sob a ótica da Engenharia de Resiliência têm se mostrado um caminho melhor, pois aplicam os conceitos de Segurança I e Segurança II e indicadores de alerta precoce.

Palavras-chave

Engenharia de Resiliência, Indicadores de segurança, Alto risco tecnológico

Referências

American Petroleum Institute – API. (2010). Process Safety Performance Indicators for the Refining and Petrochemical Industries. Washington, DC: API.

Asadzadeh, S. M., Azadeh, A., Negahban, A., & Sotoudeh, A. (2013). Assessment and improvement of integrated HSE and macroergonomics factors by fuzzy cognitive maps: the case of a large gas refinery. Journal of Loss Prevention in the Process Industries, 26(6), 1015-1026. http://dx.doi.org/10.1016/j.jlp.2013.03.007.

Azadeh, A., Asadzadeh, S. M., & Tanhaeean, M. (2017a). A consensus based AHP improved for assessment of resilience engineering in maintenance organizations. Journal of Loss Prevention in the Process Industries, 47, 151-160. http://dx.doi.org/10.1016/j.jlp.2017.02.028.

Azadeh, A., Salehi, V., Arvan, M., & Dolatkhah, M. (2014). Assessment of resilience engineering factors in high-risk environments by fuzzy cognitive maps: a petrochemical plant. Safety Science, 68, 99-107. http://dx.doi.org/10.1016/j.ssci.2014.03.004.

Azadeh, A., Salehi, V., Mirzayi, M., & Roudi, E. (2017b). Combinatorial optimization of resilience engineering and organizational factors in a gas refinery by a unique mathematical programming approach. Human Factors and Ergonomics in Manufacturing, 27(1), 53-65. http://dx.doi.org/10.1002/hfm.20690.

Azadeh, A., Zarrin, M., & Hamid, M. (2016). A novel framework for improvement of road accidents considering decision-making styles of drivers in a large metropolitan area. Accident; Analysis and Prevention, 87, 17-33. http://dx.doi.org/10.1016/j.aap.2015.11.007. PMid:26651129.

Center for Chemical Process Safety. (2005). Combined Glossary of Terms. Retrieved in 2022, December 15, from https://paradoxintellectual.com/uploads/3/0/9/9/3099442/ccps-combined-glossary_of_terms.pdf.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. http://dx.doi.org/10.1016/0377-2217(78)90138-8.

Chen, Y., McCabe, B., & Hyatt, D. (2017). A belief network model to predict safety performance of construction workers – from the perspective of organizational resilience. In The Canadian Society for Civil Engineering’s 6th International, 11th Construction Specialty Conference, Vancouver, Canada.

Chen, Y., McCabe, B., & Hyatt, D. (2018). A resilience safety climate model predicting construction safety performance. Safety Science, 109, 434-445. http://dx.doi.org/10.1016/j.ssci.2018.07.003.

Chuang, S., Ou, J., Hollnagel, E., & Hou, S. (2020). Measurement of resilience potential - development of a resilience assessment grid for emergency departments. PLoS One, 15(9), e0239472. http://dx.doi.org/10.1371/journal.pone.0239472. PMid:32956391.

Costella, M. F., Saurin, T. A., & Guimarães, L. B. M. (2009). A method for assessing health and safety management systems from the resilience engineering perspective. Safety Science, 47(8), 1056-1067. http://dx.doi.org/10.1016/j.ssci.2008.11.006.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of test. Psychometrika, 16(3), 297-334. http://dx.doi.org/10.1007/BF02310555.

Euler, L. (1736). Graph Theory: Eulerian graphs. Retrieved in 2022, November 7, from http://www.inf.ufsc.br/grafos/temas/euleriano/euleriano.htm.

Florin, M., & Linkov, I. (2016). Resilience: an edited collection of authored pieces comparing, contrasting, and integrating risk and resilience with an emphasis on ways to measure resilience. Lausanne: EPFL International Risk Governance Center (IRGC). http://doi.org/10.5075/epfl-irgc-228206

Fundação Nacional da Qualidade. (2015). Transformando o Sistema de Indicadores. Retrieved in 2022, November 7, from https://fnq.org.br/comunidade/product/livro-transformando-o-sistema-de-indicadores/.

Grecco, C., Vidal, M., Cosenza, C., Santos, I., & Carvalho, P. (2013). A Fuzzy Model to Assess Resilience for Safety Management. In Proceedings of the 5th Symposium on Resilience Engineering, Managing trade-offs (pp. 259-264). Soesterberg: The Ohio State University.

Herrera, I. A., Hollnagel, E., & Håbrekke, S. (2011). Proposing safety performance indicators for helicopter offshore on the Norwegian Continental Shelf. In PSAM 10 - Tenth Conference on Probabilistic Safety Assessment and Management. Seattle, Wa, United States.

Herrera, I. A., Pasquini, A., Ragosta, M., & Vennesland, A. (2014). The SCALES framework for identifying and extracting resilience related indicators: Preliminary findings of a go-around case study. In Proceedings of the SESAR Innovation Days (pp. 1-8). Brussels: SESAR Joint Undertaking.

Hollnagel, E. (2011). RAG – Resilience Analysis Grid. In E. Hollnagel, J. Pariès & J. Wreathall (Eds.), Resilience engineering in practice: a guidebook (pp. 275-295). London: CRC Press. https://doi.org/10.1201/9781317065265

Hollnagel, E. (2014). Safety-I and Safety-II: the past and future of safety management (1st ed.). London: CRC Press.

Hollnagel, E. (2015). Introduction to the Resilience Analysis Grid (RAG). Retrieved in 2022, November 5, from https://www.erikhollnagel.com/onewebmedia/RAG%20Outline%20V2.pdf.

Hollnagel, E., Leonhardt, J., & Licu, T. (2021). The Systemic Potentials Management: building a basis for resilient performance. Retrieved in 2022, November 5, from https://skybrary.aero/sites/default/files/bookshelf/32380.pdf.

Hollnagel, E., Pariès, J., & Wreathall, J. (2017). Resilience Engineering in Practice. London: CRC Press. Retrieved in 2022, November 5, from https://www.taylorfrancis.com/books/edit/10.1201/9781317065265/resilience-engineering-practice-erik-hollnagel-jean-pari%C3%A8s-john-wreathall.

Hollnagel, E., Woods, D., & Leveson, N. (2006). Resilience Engineering: Concepts and Precepts. Hampshire: Ashgate. Retrieved in 2022, November 5, from https://books.google.com.br/books?hl=pt-BR&lr=&id=rygf6axAH7UC&oi=fnd&pg=PP1&dq=Hollnagel,+E.,+Woods,+D., +%26+Leveson,+N.+(Eds.).+(2012).+Engineering:+Concepts+and+Precepts.+&ots=iq9GSWb_7g&sig=2BVo2fV361GJGK6d1tVmdrQ5kF8#v=onepage&q&f=false.

Hopkins, A. (2002). Safety culture, mindfulness and safe behavior: converging ideas? Retrieved in 2022, December 5, from http://hdl.handle.net/1885/41764

Huber, G. J., Gomes, J. O., & de Carvalho, P. V. R. (2012). A program to support the construction and evaluation of resilience indicators. Work (Reading, Mass.), 41(Suppl.1), 2810-2816. http://dx.doi.org/10.3233/WOR-2012-0528-2810. PMid:22317145.

Ilhanez, M. P. L. I., Silva, E. R., Mattos, U., Frankefeld, K. & Silva, L. (2023). The resilience engineering as perspective for safety indicators in high technological risk industries: a systematic literature review. Retrieved in 2023, July 24, from https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022347710

Jain, P., Pasman, H. J., Waldram, S., Pistikopoulos, E. N., & Mannan, M. S. (2018). Process Resilience Analysis Framework (PRAF): a systems approach for improved risk and safety management. Journal of Loss Prevention in the Process Industries, 53, 61-73. http://dx.doi.org/10.1016/j.jlp.2017.08.006.

Joanna Briggs Institute. (2022). Critical Appraisal Tools. Retrieved in 2022, August 8, from https://jbi.global/critical-appraisal-tools.

Le Coze, J. (2023). Coupling and complexity at the global scale: flows, networks, interconnectedness and synchronicity (eg Covid-19). Safety Science, 165, 106193. http://dx.doi.org/10.1016/j.ssci.2023.106193.

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1. http://dx.doi.org/10.1186/2046-4053-4-1 PMid:25554246.

Nelson, P. F., Martín-Del-Campo, C., Hallbert, B., & Mosleh, A. (2016). Development of a leading performance indicator from operational experience and resilience in a nuclear power plant. Nuclear Engineering and Technology, 48(1), 114-128. http://dx.doi.org/10.1016/j.net.2015.10.010.

Øien, K., & Nielsen, L. (2012). Proactive resilience-based indicators: The case of the deepwater horizon accident. In Proceedings of the International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production (pp. 972-983). Perth: OnePetro.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical Research Ed.), 372(71), n71. http://dx.doi.org/10.1136/bmj.n71. PMid:33782057.

Patriarca, R., di Gravio, G., Costantino, F., Falegnami, A., & Bilotta, F. (2018). An analytic framework to assess organizational resilience. Safety and Health at Work, 9(3), 265-276. http://dx.doi.org/10.1016/j.shaw.2017.10.005. PMid:30370158.

Patriarca, R., Falegnami, A., de Nicola, A., Villani, M. L., & Paltrinieri, N. (2019). Serious games for industrial safety: an approach for developing resilience early warning indicators. Safety Science, 118, 316-331. http://dx.doi.org/10.1016/j.ssci.2019.05.031.

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. http://dx.doi.org/10.1080/14786440109462720.

Peñaloza, G. A. (2020). A framework to assess Safety Performance Measurement Systems for construction projects based on the Resilience Engineering perspective (Doctoral degree). Federal University of Rio Grande do Sul, Porto Alegre.

Peñaloza, G. A., Saurin, T. A., Formoso, C. T., & Herrera, I. A. (2020). An engineering resilience perspective of safety performance measurement systems: A systematic literature review. Safety Science, 130, 2020. http://dx.doi.org/10.1016/j.ssci.2020.104864.

Perrow, C. (1984). Normal accidents: living with high-risk technologies. USA: BasicBooks. Retrieved in 2022, December 5, from https://www.theisrm.org/public-library/Charles%20Perrow%20-%20Normal%20Accidents.pdf.

Pflanz, M., & Levis, A. (2012). An approach to evaluating resilience in command and control architectures. Procedia Computer Science, 8, 141-146. http://dx.doi.org/10.1016/j.procs.2012.01.030.

Rabbani, M., Yazdanparast, R., & Mobini, M. (2019). An algorithm for performance evaluation of resilience engineering culture based on graph theory and matrix approach. International Journal of Systems Assurance Engineering and Management, 10(2), 228-241. http://dx.doi.org/10.1007/s13198-019-00774-0.

Ranasinghe, U., Jefferies, M., Davis, P., & Pillay, M. (2020). Resilience engineering indicators and safety management: a systematic review. Safety and Health at Work, 11(2), 127-135. http://dx.doi.org/10.1016/j.shaw.2020.03.009. PMid:32596006.

Reason, J. (1997). Managing the risks of organizational accidents. London: Routledge.

Resilience Engineering Association. (2023). Welcome to Resilience Engineering Association. Retrieved in 2022, December 5, from https://www.resilience-engineering-association.org/.

Righi, A., & Saurin, T. (2015). Complex socio-technical systems: characterization and management guidelines. Applied Ergonomics, 50, 19-30. http://dx.doi.org/10.1016/j.apergo.2015.02.003. PMid:25959314.

Rubio-Romero, J. C., Pardo-Ferreira, M. C., Varga-Salto, J., & Galindo-Reyes, F. (2018). Composite leading indicator to assess the resilience engineering in occupational health & safety in municipal solid waste management companies. Safety Science, 108, 161-172. http://dx.doi.org/10.1016/j.ssci.2018.04.014.

Saaty, T. L. (2004). Decision making – the Analytic Hierarchy and Network Processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), 1-35. http://dx.doi.org/10.1007/s11518-006-0151-5.

Sakuda, H., & Kitamura, M. (2020). Resilience Assessment Grid (RAG) for facilitating safety awareness of nuclear power plant personnel. In Proceedings of the 8th REA Symposium on Resilience Engineering: Scaling up and Speeding up (pp. 1-9). Kalmar: Linnaeus University. https://doi.org/10.15626/rea8.05

Saurin, T. A., & Carim Júnior, G. C. (2011). Evaluation and improvement of a method for assessing HSMS from the resilience engineering perspective: a case study of an electricity distributor. Safety Science, 49(2), 355-368. http://dx.doi.org/10.1016/j.ssci.2010.09.017.

Saurin, T. A., & Werle, N. B. (2017). A framework for the analysis of slack in socio-technical systems. Reliability Engineering & System Safety, 167, 439-451. http://dx.doi.org/10.1016/j.ress.2017.06.023.

Shirali, G., Mohammadfam, I., & Ebrahimipour, V. (2013). A new method for quantitative assessment of resilience engineering by PCA and NT approach: a case study in a process industry. Reliability Engineering & System Safety, 119, 88-94. http://dx.doi.org/10.1016/j.ress.2013.05.003.

Shirali, G., Motamedzade, M., Mohammadfam, I., Ebrahimipour, V., & Moghimbeigi, A. (2016). Assessment of resilience engineering factors based on system properties in a process industry. Cognition Technology and Work, 18(1), 19-31. http://dx.doi.org/10.1007/s10111-015-0343-1.

Shirali, G., Shekari, M., & Angali, K. A. (2018). Assessing reliability and validity of an instrument for measuring resilience safety culture in sociotechnical systems. Safety and Health at Work, 9(3), 296-307. http://dx.doi.org/10.1016/j.shaw.2017.07.010. PMid:30370161.

Souza, A. P., Gomes, J. O., & Carvalho, P. V. R. (2021). Uma abordagem para o monitoramento de indicadores de resiliência em organizações. Revista Ação Ergonômica, 6(2), 1-11. Retrieved in 2022, December 5, from https://www.revistaacaoergonomica.org/article/627d539ca9539504123c8ba3/pdf/abergo-6-2-1.pdf

Woods, D. D., & Wreathall, J. (2003). Managing risk proactively: the emergence of resilience engineering. Columbus: Ohio University. Retrieved in 2022, December 5, from https://www.researchgate.net/publication/228711828_Managing_Risk_Proactively_The_Emergence_of_Resilience_Engineering.

Wreathall, J. (2006). Challenges for a practice of resilience engineering: properties of resilient organizations: an initial view. In E. Hollnagel, D. Woods & N. Leveson (Eds.). Resilience engineering: concepts and precepts (pp. 275-285). Hampshire: Ashgate. Retrieved in 2022, November 8, from https://books.google.com.br/books?hl=pt-BR&lr=&id=rygf6axAH7UC&oi=fnd&pg=PP1&dq=Hollnagel,+E.,+Woods,+D., +%26+Leveson,+N.+(Eds.).+(2012).+Engineering:+Concepts+and+Precepts.+&ots=iq9GSWb_7g&sig=2BVo2fV361GJGK6d1tVmdrQ5kF8#v=onepage&q&f=false.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X.

Zarrin, M., & Azadeh, A. (2019). Mapping the influences of resilience engineering on health, safety, and environment and ergonomics management system by using Z-number cognitive map. Human Factors and Ergonomics in Manufacturing, 29(2), 141-153. http://dx.doi.org/10.1002/hfm.20766.
 

6564ce2fa95395648b3c8803 gp Articles

Gest. Prod.

Share this page
Page Sections