Assessment of safety indicators in high-risk industries in the context of Resilience Engineering: a systematic literature review
Avaliação de indicadores de segurança em indústrias de altor risco no contexto da Engenharia de Resiliência: uma revisão sistemática da literatura
Marcelo Praxedes Larrea Ilhanez; Elmo Rodrigues da Silva; Ubirajara Aluizio de Oliveira Mattos; Karoline Pinheiro Frankenfeld; Luiz Claudio Silva
Abstract
Keywords
Resumo
Palavras-chave
Referências
American Petroleum Institute – API. (2010).
Asadzadeh, S. M., Azadeh, A., Negahban, A., & Sotoudeh, A. (2013). Assessment and improvement of integrated HSE and macroergonomics factors by fuzzy cognitive maps: the case of a large gas refinery.
Azadeh, A., Asadzadeh, S. M., & Tanhaeean, M. (2017a). A consensus based AHP improved for assessment of resilience engineering in maintenance organizations.
Azadeh, A., Salehi, V., Arvan, M., & Dolatkhah, M. (2014). Assessment of resilience engineering factors in high-risk environments by fuzzy cognitive maps: a petrochemical plant.
Azadeh, A., Salehi, V., Mirzayi, M., & Roudi, E. (2017b). Combinatorial optimization of resilience engineering and organizational factors in a gas refinery by a unique mathematical programming approach.
Azadeh, A., Zarrin, M., & Hamid, M. (2016). A novel framework for improvement of road accidents considering decision-making styles of drivers in a large metropolitan area.
Center for Chemical Process Safety. (2005).
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units.
Chen, Y., McCabe, B., & Hyatt, D. (2017). A belief network model to predict safety performance of construction workers – from the perspective of organizational resilience. In
Chen, Y., McCabe, B., & Hyatt, D. (2018). A resilience safety climate model predicting construction safety performance.
Chuang, S., Ou, J., Hollnagel, E., & Hou, S. (2020). Measurement of resilience potential - development of a resilience assessment grid for emergency departments.
Costella, M. F., Saurin, T. A., & Guimarães, L. B. M. (2009). A method for assessing health and safety management systems from the resilience engineering perspective.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of test.
Euler, L. (1736).
Florin, M., & Linkov, I. (2016). Resilience: an edited collection of authored pieces comparing, contrasting, and integrating risk and resilience with an emphasis on ways to measure resilience. Lausanne: EPFL International Risk Governance Center (IRGC).
Fundação Nacional da Qualidade. (2015).
Grecco, C., Vidal, M., Cosenza, C., Santos, I., & Carvalho, P. (2013). A Fuzzy Model to Assess Resilience for Safety Management. In
Herrera, I. A., Hollnagel, E., & Håbrekke, S. (2011). Proposing safety performance indicators for helicopter offshore on the Norwegian Continental Shelf. In
Herrera, I. A., Pasquini, A., Ragosta, M., & Vennesland, A. (2014). The SCALES framework for identifying and extracting resilience related indicators: Preliminary findings of a go-around case study. In
Hollnagel, E. (2011). RAG – Resilience Analysis Grid. In E. Hollnagel, J. Pariès & J. Wreathall (Eds.),
Hollnagel, E. (2014).
Hollnagel, E. (2015).
Hollnagel, E., Leonhardt, J., & Licu, T. (2021).
Hollnagel, E., Pariès, J., & Wreathall, J. (2017).
Hollnagel, E., Woods, D., & Leveson, N. (2006).
Hopkins, A. (2002).
Huber, G. J., Gomes, J. O., & de Carvalho, P. V. R. (2012). A program to support the construction and evaluation of resilience indicators.
Ilhanez, M. P. L. I., Silva, E. R., Mattos, U., Frankefeld, K. & Silva, L. (2023).
Jain, P., Pasman, H. J., Waldram, S., Pistikopoulos, E. N., & Mannan, M. S. (2018). Process Resilience Analysis Framework (PRAF): a systems approach for improved risk and safety management.
Joanna Briggs Institute. (2022).
Le Coze, J. (2023). Coupling and complexity at the global scale: flows, networks, interconnectedness and synchronicity (eg Covid-19).
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement.
Nelson, P. F., Martín-Del-Campo, C., Hallbert, B., & Mosleh, A. (2016). Development of a leading performance indicator from operational experience and resilience in a nuclear power plant.
Øien, K., & Nielsen, L. (2012). Proactive resilience-based indicators: The case of the deepwater horizon accident. In
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
Patriarca, R., di Gravio, G., Costantino, F., Falegnami, A., & Bilotta, F. (2018). An analytic framework to assess organizational resilience.
Patriarca, R., Falegnami, A., de Nicola, A., Villani, M. L., & Paltrinieri, N. (2019). Serious games for industrial safety: an approach for developing resilience early warning indicators.
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space.
Peñaloza, G. A. (2020).
Peñaloza, G. A., Saurin, T. A., Formoso, C. T., & Herrera, I. A. (2020). An engineering resilience perspective of safety performance measurement systems: A systematic literature review.
Perrow, C. (1984).
Pflanz, M., & Levis, A. (2012). An approach to evaluating resilience in command and control architectures.
Rabbani, M., Yazdanparast, R., & Mobini, M. (2019). An algorithm for performance evaluation of resilience engineering culture based on graph theory and matrix approach.
Ranasinghe, U., Jefferies, M., Davis, P., & Pillay, M. (2020). Resilience engineering indicators and safety management: a systematic review.
Reason, J. (1997).
Resilience Engineering Association. (2023).
Righi, A., & Saurin, T. (2015). Complex socio-technical systems: characterization and management guidelines.
Rubio-Romero, J. C., Pardo-Ferreira, M. C., Varga-Salto, J., & Galindo-Reyes, F. (2018). Composite leading indicator to assess the resilience engineering in occupational health & safety in municipal solid waste management companies.
Saaty, T. L. (2004). Decision making – the Analytic Hierarchy and Network Processes (AHP/ANP).
Sakuda, H., & Kitamura, M. (2020). Resilience Assessment Grid (RAG) for facilitating safety awareness of nuclear power plant personnel. In
Saurin, T. A., & Carim Júnior, G. C. (2011). Evaluation and improvement of a method for assessing HSMS from the resilience engineering perspective: a case study of an electricity distributor.
Saurin, T. A., & Werle, N. B. (2017). A framework for the analysis of slack in socio-technical systems.
Shirali, G., Mohammadfam, I., & Ebrahimipour, V. (2013). A new method for quantitative assessment of resilience engineering by PCA and NT approach: a case study in a process industry.
Shirali, G., Motamedzade, M., Mohammadfam, I., Ebrahimipour, V., & Moghimbeigi, A. (2016). Assessment of resilience engineering factors based on system properties in a process industry.
Shirali, G., Shekari, M., & Angali, K. A. (2018). Assessing reliability and validity of an instrument for measuring resilience safety culture in sociotechnical systems.
Souza, A. P., Gomes, J. O., & Carvalho, P. V. R. (2021). Uma abordagem para o monitoramento de indicadores de resiliência em organizações.
Woods, D. D., & Wreathall, J. (2003).
Wreathall, J. (2006). Challenges for a practice of resilience engineering: properties of resilient organizations: an initial view. In E. Hollnagel, D. Woods & N. Leveson (Eds.).
Zadeh, L. A. (1965). Fuzzy sets.
Zarrin, M., & Azadeh, A. (2019). Mapping the influences of resilience engineering on health, safety, and environment and ergonomics management system by using Z-number cognitive map.