Digital twins as enablers of structure inspection and maintenance
Julia Menegon; Eduardo Luís Isatto
Abstract
Keywords
Referências
Ali, A. M., Mohamed, E., Yacout, S., & Shaban, Y. (2020). Cloud computing based unsupervised fault diagnosis system in the context of Industry 4.0.
Angjeliu, G., Coronelli, D., & Cardani, G. (2020). Development of the simulation model for Digital Twin applications in historical masonry buildings: the integration between numerical and experimental reality.
Associação Brasileira de Normas Técnicas - ABNT. (2012).
Davila Delgado, J. M., & Oyedele, L. (2021). Digital Twins for the built environment: learning from conceptual and process models in manufacturing.
Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011).
Errandonea, I., Beltrán, S., & Arrizabalaga, S. (2020). Digital Twin for maintenance: a literature review.
Ferreira, F. M. C., & Souza, H. A. (2021). Management for maintenance of public education.
Firmino, A. S., Perles, G. X., Mendes, J. V., Silva, J. E. A. R., & Silva, D. A. L. (2020). Towards Industry 4.0: a SWOT-based analysis for companies located in the Sorocaba Metropolitan Region (São Paulo State, Brazil).
Glaessgen, E. H., & Stargel, D. S. (2012). The digital twin paradigm for future NASA and U.S. Air force vehicles. In
Grieves, M., & Vickers, J. (2016). Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In J. Kahlen, S. Flumerfelt & A. Alves (Eds.),
Isailović, D., Stojanovic, V., Trapp, M., Richter, R., Hajdin, R., & Döllner, J. (2020). Bridge damage: detection, IFC-based semantic enrichment and visualization.
Jiang, F., Ma, L., Broyd, T., & Chen, K. (2021). Digital twin and its implementations in the civil engineering sector.
Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: a categorical literature review and classification.
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0.
Lin, K., Xu, Y. L., Lu, X., Guan, Z., & Li, J. (2021). Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes.
Lu, R., & Brilakis, I. (2019). Digital twinning of existing reinforced concrete bridges from labelled point clusters.
Mesquita, E., Arêde, A., Pinto, N., Antunes, P., & Varum, H. (2018). Long-term monitoring of a damaged historic structure using a wireless sensor network.
Morgenthal, G., Hallermann, N., Kersten, J., Taraben, J., Debus, P., Helmrich, M., & Rodehorst, V. (2019). Framework for automated UAS-based structural condition assessment of bridges.
Moyano, J., Gil-Arizón, I., Nieto-Julián, J. E., & Marín-García, D. (2021). Analysis and management of structural deformations through parametric models and HBIM workflow in architectural heritage.
Opoku, D. G. J., Perera, S., Osei-Kyei, R., & Rashidi, M. (2021). Digital twin application in the construction industry: a literature review.
Ozturk, G. B. (2021). Digital Twin Research in the AECO-FM industry.
Park, K. T., Lee, D., & Do Noh, S. (2020). Operation procedures of a work-center-level digital twin for sustainable and smart manufacturing.
Silva, J. F., Silva, F. L., Silva, D. O., Rocha, L. A. O., & Ritter, Á. M. (2022). Decision making in the process of choosing and deploying industry 4.0 technologies.
Tao, F., & Zhang, M. (2017). Digital Twin Shop-Floor: a new shop-floor paradigm towards smart manufacturing.
Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. C. (2018). Digital twin driven prognostics and health management for complex equipment.
Tavares, L. (2020).
Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in software engineering. In
Zhao, S., Kang, F., Li, J., & Ma, C. (2021). Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction.