Gestão & Produção
Gestão & Produção
Artigo Original

Consistencies of the capability indices based on the normal probability distribution

Jaqueline Akemi Suzuki Sediyama; Daibou Alassane; Raphael Henrique Teixeira da Silva; José Ivo Ribeiro Júnior

Downloads: 2
Views: 476


Abstract:: Capability analysis seeks to estimate the probability that a process will produce compliant products. The capability indices are dimensionless parameters that measure how well the process can meet specifications. In the literature, eight capability indices are listed, among others, considering a stable process under statistical control and based on the normal probability distribution, defined by: Cp, Pp, Cpk, Ppk, Cpm, Ppm, Cpmk, and Ppmk. Basically, the index formulas differ in the calculations of the variability within and total, and of the shifts of the mean in relation to the nominal value and the nearest specification limit. The objective of this article was to compare these capacity indexes, and for that, it was chosen the most consistent estimator, that is, the one that improved the accuracy and efficiency as the number of observations increased. Thus, a simulation of 30,000 values of a normal random variable with a mean equal to zero and a standard deviation equal to one was performed. This made it possible to sample this process 1,000 times using 5, 10, 15, 20, 25, and 30 rational subgroups with individual observations or sample elements. Subsequently, 20 mean shifts were provoked, with values ranging from 0.1 to 2 and varying by 0.1 unit. According to the results, it was concluded that the indexes Cpk and Ppk were the most consistent in presenting higher accuracy and efficiency for at least 15 rational subgroups or sample elements, regardless of the magnitude of the mean displacement in relation to the nominal value.


Capability index, Estimator, Quality control


Abdolshah, M., Yusuff, R. M., Hong, T. S., & Yusof, M. Y. H. (2009). New process capability index using Taguchi loss functions. Journal of Applied Sciences, 9(20), 3775-3779.

Álvarez, E., Moya-Férnandez, P. J., Blanco-Encomienda, F. J., & Muñoz, J. F. (2015). Methodological insights for industrial quality control management: the impact of various estimators of the standard deviaton on the process capability index. Journal of King Saud University. Science, 27(3), 271-277.

Barreto, R. R., Rocha, H. D., & Borges, C. A., Jr. (2016). Análise da capacidade de um processo de revestimento de bobinas de aço. In Anais do XIII Simpósio de Excelência em Gestão e Tecnologia. Rezende: SEGET.

Chen, J. P., & Ding, C. G. (2001). A new process capability index for non-normal distributions. International Journal of Quality & Reliability Management, 18(6-7), 762-770.

Costa, A. F. B., Epprecht, E. K., & Carpinetti, L. C. R. (2018). Controle estatístico de qualidade (2. ed.). São Paulo: Atlas.

Devore, J. L. (2006). Probabilidade e estatísticas: para engenharia e ciências. São Paulo: Cengage Learning.

Dianda, D. F., Quaglino, M. B., & Pagura, J. A. (2016). Performance of multivariate process capability indices under normal and non-normal distributions. Quality and Reliability Engineering International, 32(7), 2345-2366.

Gonçalez, P. U., & Werner, L. (2009). Comparação dos índices de capacidade do processo para distribuições não-normais. Gestão & Produção, 16(1), 121-132.

Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 1(1), 41-52.

Kotz, S., Pearn, W. L., & Johnson, N. L. (1993). Some process capability índices are more reliable than one might think. Journal of the Royal Statistical Society. Series A, (Statistics in Society), 42, 55-62.

Kushler, R., & Hurley, P. (1992). Confidence bounds for capability indices. Journal of Quality Technology, 24(4), 188-195.

Miao, R., Zhang, X., Yang, D., Zhao, Y., & Jiang, Z. (2011). A conjugate bayesian approach for calculating process capability índices. Expert Systems with Applications, 38(7), 8099-8104.

Mittag, H. J., & Germany, H. (1997). Measurement error effects on the performance of process capability índices. In H. J. Lenz & P. T. Wilrih (Eds.), Frontiers in statistical quality control 5 (pp. 195-206). Berlin: Springer-Verlag Berlin Heidelberg.

Montgomery, D. C. (2019). Introdução ao Controle Estatístico da Qualidade (7. ed.). Rio de Janeiro: Livros Técnicos e Científicos S.A.

Montgomery, D. C., & Runger, G. C. (2018). Estatística aplicada e probabilidade para engenheiros (6. ed.). Rio de Janeiro: LTC.

Pan, J., & Lee, C. (2010). New capability indices for evaluating the performance of multivariate manufacturing processes. Quality and Reliability Engineering International, 26(1), 3-15.

Parchami, A., & Mashinchi, M. (2007). Fuzzy estimation for process capability índices. Information Sciences, 177(6), 1452-1462.

Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-231.

Pearn, W. L., Lin, G. H., & Chen, K. S. (1998). Distributional and inferential properties of process accuracy and process precision indices. Communications in Statistics. Theory and Methods, 27(4), 985-1000.

Riaz, M., & Hamid, T. (2016). On the performance of different capability indices under normal and non-normal distributions. Zhongguo Gongcheng Xuekan, 39(8), 889-899.

Ribeiro, J. I., Jr. (2013). Métodos estatísticos aplicados ao controle da qualidade (1. ed.). Viçosa: Editora UFV.

Ribeiro, J. L., & Caten, C. S. (2012). Série monográfica Qualidade - Projeto de experimentos. Porto Alegre: Universidade Federal do Rio Grande do Sul. Retrieved in 2022, February 16, from

Rodrigues, L. A. (2001). Índices de avaliação de processos: abordagem univariada e multivariada (Dissertação de mestrado). Universidade Federal do Rio Grande do Sul, Porto Alegre.

Souza, F. S., Pedrini, D. C., & Caten, C. S. (2014). Proposta de fluxograma orientativo para aplicação de índices de capacidade. Gestão & Produção, 21(4), 882-894.

Souza, L. M., Ribeiro, J. I., Jr., Reis, G. M., & Ide, M. S. (2008). Eficiência dos gráficos de controle Xbarra, EWMA e CUSUM. Revista Produção e Engenharia, 1, 81-94.

Stoumbos, Z. G. (2002). Process capability indices: overview and extensions. Nonlinear Analysis Real World Applications, 3(2), 191-210.

Tang, L. C., & Than, S. E. (1999). Computing process capability indices for non-normal data: a review and comparative study. Quality and Reliability Engineering International, 15(5), 339-353.<339::AID-QRE259>3.0.CO;2-A.

Vannman, K. (1995). A unified approach to capability índices. Statistica Sinica, 5, 805-820. Retrieved in 2022, February 16, from

Wang, S., Chiang, J. Y., Tsai, T. R., & Qin, Y. (2021). Robust process capability indices and statistical inference based on model selection. Computers & Industrial Engineering, 156, 107265.

Werkema, M. C. (1995). Ferramentas estatísticas básicas para o gerenciamento de processos (Vol. 2). Belo Horizonte: Fundação Christiano Ottoni.

Wu, C., Pearn, W. L., & Kotz, S. (2009). An overview of theory and practice on process capability índices for quality assurance. International Journal of Production Economics, 117(2), 338-359.

Yum, B. J., & Kim, K. W. (2011). A bibliography of the literature on process capability indices: 2000-2009. Quality and Reliability Engineering International, 27(3), 251-268.

642dce5fa9539576ce377844 gp Articles

Gest. Prod.

Share this page
Page Sections