Gestão & Produção
https://gestaoeproducao.com/article/doi/10.1590/1806-9649-2022v29e12122
Gestão & Produção
Artigo Original

Blade manufacturing for onshore and offshore wind farms: the energy and environmental performance for a case study in Brazil

Mário Joel Ramos Júnior; Diego Lima Medeiros; Edna dos Santos Almeida

Downloads: 0
Views: 349

Abstract

Abstract: This study aims to analyze the energy and environmental performance of the manufacture of two models of wind turbine blades for a 300 MW wind farm. Material flow analysis (MFA) was used to prepare the mass balance, while life cycle assessment (LCA), based on ISO-14044, was used to evaluate three impact categories, considering sensitivity analysis to evaluate the replacement of wind turbine blade materials. Results showed that the manufacturing of wind turbine blades causes a 10% loss of material impregnated with fiberglass and epoxy resin. Fiberglass was the input with the highest contribution to water consumption, energy consumption, and the carbon footprint. The sensitivity analysis showed that, for the offshore scenario of higher capacity factor and longer lifetime, the carbon footprint contribution per electricity to be produced was 0.214 kg CO2eq/GJ, while for the onshore scenario of lower capacity factor and shorter lifetime, it was 1.37 kg CO2eq/GJ. When using jute fiber grown without irrigation as a substitute input for fiberglass, the reduction was 38% (onshore) and 42% (offshore) in water consumption, 18% (onshore and offshore) in energy consumption, and 24% (onshore) and 25% (offshore) in carbon footprint. The onshore model had a larger impact in all the categories evaluated than the offshore model. Therefore, the use of unirrigated jute fiber allows gains in energy and environmental performance.

Keywords

Renewable energy, Wind energy, Life cycle assessment, Environmental performance, Wind turbine blades, Composite material

Referências

Aeris Energy. (2022). Relatório de sustentabilidade 2021. Caucaia: Aeris Energy. Retrieved in 2023, March 21, from https://www.aerisenergy.com.br/sites/default/files/nosso-proposito-sustentabilidade/arquivos/relatorio_sustentabilidade_aeris_2021_V2.pdf

Agência Brasileira de Desenvolvimento Industrial – ABDI. (2017). Atualização do mapeamento da cadeia produtiva da indústria eólica no Brasil. Brasília: Agência Brasileira de Desenvolvimento Industrial. Retrieved in 2023, March 21, from https://docplayer.com.br/109774745-Atualizacao-do-mapeamento-da-cadeia-produtiva-da-industria-eolica-no-brasil.html

Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial intelligence in sustainable energy industry: status quo, challenges and opportunities. Journal of Cleaner Production, 289, 125834. http://dx.doi.org/10.1016/j.jclepro.2021.125834.

Associação Brasileira de Energia Eólica – ABEEÓLICA. (2022). Boletim anual de geração eólica 2021. Retrieved in 2023, March 21, from https://abeeolica.org.br/energia-eolica/dados-abeeolica/?ano=2022

Associação Brasileira de Normas Técnicas – ABNT. (2009). NBR ISO 14044: gestão ambiental—avaliação do ciclo de vida—requisitos e orientações. São Paulo: Associação Brasileira de Normas Técnicas.

Bakri, B., Chandrabakty, S., Alfriansyah, R., & Dahyar, A. (2016). Potential coir fibre composite for small wind turbine blade application. International Journal on Smart Material and Mechatronics, 2(1), 42-44. http://dx.doi.org/10.20342/IJSMM.2.1.44.

Banga, H., Singh, V. K., & Choudhary, S. K. (2015). Fabrication and study of mechanical properties of bamboo fibre reinforced bio-composites. Innovative Systems Design and Engineering, 6, 17.

Bauer, L., & Matysik, S. (2022). Windturbines database. Retrieved in 2023, March 21, from https://en.wind-turbine-models.com/turbines

Boopalan, M., Umapathy, M. J., & Jenyfer, P. (2012). A comparative study on the mechanical properties of jute and sisal fiber reinforced polymer composites. Silicon, 4(3), 145-149. http://dx.doi.org/10.1007/s12633-012-9110-6.

Brasil. Conselho Nacional de Trânsito – CONTRAN. (2021, December 24). Resolução CONTRAN nº 882, de 13 de dezembro de 2021. Estabelece os limites de pesos e dimensões para veículos que transitem por vias terrestres, referenda a Deliberação CONTRAN nº 246, de 25 de novembro de 2021, e dá outras providências (seção 1, nº 242, p. 153). Brasília, DF: Diário Oficial da República Federativa do Brasil. Retrieved in 2023, March 21, from https://www.in.gov.br/en/web/dou/-/resolucao-contran-n-882-de-13-de-dezembro-de-2021-370017699

Brasil. Presidência da República. (2010, August 3). Lei nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei nº 9.605, de 12 de fevereiro de 1998; e dá outras providências (seção 1, p. 3). Brasília, DF: Diário Oficial da República Federativa do Brasil. Retrieved in 2023, March 21, from http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm

Brasil. Presidência da República. (2022, Januray 7). Lei nº 14.301, de 7 de janeiro de 2022. Institui o Programa de Estímulo ao Transporte por Cabotagem (BR do Mar); altera as Leis nºs 5.474, de 18 de julho de 1968, 9.432, de 8 de janeiro de 1997, 10.233, de 5 de junho de 2001, 10.893, de 13 de julho de 2004, e 11.033, de 21 de dezembro de 2004; e revoga o Decreto do Poder Legislativo nº 123, de 11 de novembro de 1892, e o Decreto-Lei nº 2.784, de 20 de novembro de 1940, e dispositivos da Medida Provisória nº 2.217-3, de 4 de setembro de 2001, e das Leis nºs 6.458, de 1º de novembro de 1977, 11.434, de 28 de dezembro de 2006, 11.483, de 31 de maio de 2007, 11.518, de 5 de setembro de 2007, 12.599, de 23 de março de 2012, 12.815, de 5 de junho de 2013, e 13.848, de 25 de junho de 2019 (seção 1, p. 1). Brasília, DF: Diário Oficial da República Federativa do Brasil. Retrieved in 2023, March 21, from https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2022/Lei/L14301.htm

Brunner, P. H., & Rechberger, H. (2003). Practical handbook of material flow analysis. Boca Raton: CRC Press. http://dx.doi.org/10.1201/9780203507209.

Chiesura, G., Stecher, H., & Jensen, J. P. (2020). Blade materials selection influence on sustainability: a case study through LCA. IOP Conference Series. Materials Science and Engineering, 942(1), 012011. http://dx.doi.org/10.1088/1757-899X/942/1/012011.

Chipindula, J., Botlaguduru, V., Du, H., Kommalapati, R., & Huque, Z. (2018). Life cycle environmental impact of onshore and offshore wind farms in Texas. Sustainability, 10(6), 2022. http://dx.doi.org/10.3390/su10062022.

Ciroth, A., Muller, S., Weidema, B., Lesage, P., Berlin, G., & Montréal, C. (2012). Refining the pedigree matrix approach in ecoinvent: towards empirical uncertainty factors. Berlin: GreenDelta.

Cooperman, A., Eberle, A., & Lantz, E. (2021). Wind turbine blade material in the United States: quantities, costs, and end-of-life options. Resources, Conservation and Recycling, 168, 105439. http://dx.doi.org/10.1016/j.resconrec.2021.105439.

Davies, P., Arhant, M., & Grossmann, E. (2022). Seawater ageing of infused flax fibre reinforced acrylic composites. Composites Part C: Open Access, 8, 100246. http://dx.doi.org/10.1016/j.jcomc.2022.100246.

Deeney, P., Nagle, A. J., Gough, F., Lemmertz, H., Delaney, E. L., McKinley, J. M., Graham, C., Leahy, P. G., Dunphy, N. P., & Mullally, G. (2021). End-of-life alternatives for wind turbine blades: sustainability Indices based on the UN sustainable development goals. Resources, Conservation and Recycling, 171, 105642. http://dx.doi.org/10.1016/j.resconrec.2021.105642.

Diógenes, J. R. F., Claro, J., & Rodrigues, J. C. (2019). Barriers to onshore wind farm implementation in Brazil. Energy Policy, 128, 253-266. http://dx.doi.org/10.1016/j.enpol.2018.12.062.

Dorigato, A. (2021). Recycling of thermosetting composites for wind blade application. Advanced Industrial and Engineering Polymer Research, 4(2), 116-132. http://dx.doi.org/10.1016/j.aiepr.2021.02.002.

Electric Power Research Institute – EPRI. (2020). Wind turbine blade recycling: preliminary assessment. Retrieved in 2023, March 21, from https://www.epri.com/research/products/000000003002017711

Empresa de Pesquisa Energética – EPE. (2021). Empreendimentos eólicos ao fim da vida útil – situação atual e perspectivas futuras. Brasília: Empresa de Pesquisa Energética. Retrieved in 2023, March 21, from https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-563/NT-EPE-DEE-012-2021.pdf

European Union. (2008). Directive 2008/98/EC of the European Parliament and of the Council, November 19, 2008, on waste and repealing certain directives. Brussels: European Union. Retrieved in 2023, March 21, from http://data.europa.eu/eli/dir/2008/98/oj/eng

Giannetti, B. F., Bonilla, S. H., & Almeida, C. M. V. B. (2012). Cleaner production initiatives and challenges for a sustainable world. Journal of Cleaner Production, 22(1), I. http://dx.doi.org/10.1016/S0959-6526(11)00431-8.

Global Wind Energy Council – GWEC. (2022). Global wind report 2022. Brussels: Global Wind Energy Council. Retrieved in 2023, March 21, from https://gwec.net/wp-content/uploads/2022/04/Annual-Wind-Report-2022_screen_final_April.pdf

Gomaa, M. R., Rezk, H., Mustafa, R. J., & Al-Dhaifallah, M. (2019). Evaluating the environmental impacts and energy performance of a wind farm system utilizing the life-cycle assessment method: a practical case study. Energies, 12(17), 3263. http://dx.doi.org/10.3390/en12173263.

Grupo de Trabalho da Sociedade Civil para a Agenda 2030. (2021). V relatório luz da sociedade civil Agenda 2030 de desenvolvimento sustentável Brasil. Recife: Gestos – Soropositividade, comunicação e Gênero/Instituto Democracia e Sustentabilidade. ODS 7 energia limpa e acessível: assegurar acesso confiável, sustentável, moderno e a preço acessível à energia para todas e todos, pp. 46-50.

Herrera, M. M., Dyner, I., & Cosenz, F. (2019). Assessing the effect of transmission constraints on wind power expansion in northeast Brazil. Utilities Policy, 59, 100924. http://dx.doi.org/10.1016/j.jup.2019.05.010.

Holmes, J. W., Brøndsted, P., Sørensen, B. F., Jiang, Z., Sun, Z., & Chen, X. (2009). Development of a bamboo-based composite as a sustainable green material for wind turbine blades. Wind Engineering, 33(2), 197-210. http://dx.doi.org/10.1260/030952409789141053.

International Energy Agency – IEA. (2022). Electricity production – electricity information: overview – analysis. Retrieved in 2023, March 21, from https://www.iea.org/reports/electricity-information-overview/electricity-production

Jensen, J. P., & Skelton, K. (2018). Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy. Renewable & Sustainable Energy Reviews, 97, 165-176. http://dx.doi.org/10.1016/j.rser.2018.08.041.

Karim, N., Sarker, F., Afroj, S., Zhang, M., Potluri, P., & Novoselov, K. S. (2021). Sustainable and multifunctional composites of graphene-based natural jute fibers. Advanced Sustainable Systems, 5(3), 2000228. http://dx.doi.org/10.1002/adsu.202000228.

Kimm, M., Pico, D., & Gries, T. (2020). Investigation of surface modification and volume content of glass and carbon fibers from fiber reinforced polymer waste for reinforcing concrete. Journal of Hazardous Materials, 390, 121797. http://dx.doi.org/10.1016/j.jhazmat.2019.121797. PMid:31843401.

Köberle, A. C., Garaffa, R., Cunha, B. S. L., Rochedo, P., Lucena, A. F. P., Szklo, A., & Schaeffer, R. (2018). Are conventional energy megaprojects competitive? Suboptimal decisions related to cost overruns in Brazil. Energy Policy, 122, 689-700. http://dx.doi.org/10.1016/j.enpol.2018.08.021.

Larsen, K. (2009). Recycling wind. Reinforced Plastics, 53(1), 20-25. http://dx.doi.org/10.1016/S0034-3617(09)70043-8.

Liu, P., & Barlow, C. Y. (2016). The environmental impact of wind turbine blades. IOP Conference Series. Materials Science and Engineering, 139, 012032. http://dx.doi.org/10.1088/1757-899X/139/1/012032.

Mello, G., Dias, M. F., & Robaina, M. (2020). Wind farms life cycle assessment review: CO2 emissions and climate change. Energy Reports, 6, 214-219. http://dx.doi.org/10.1016/j.egyr.2020.11.104.

Müssig, J., Amaducci, S., Bourmaud, A., Beaugrand, J., & Shah, D. U. (2020). Transdisciplinary top-down review of hemp fibre composites: from an advanced product design to crop variety selection. Composites Part C: Open Access, 2, 100010. http://dx.doi.org/10.1016/j.jcomc.2020.100010.

Nagle, A. J., Delaney, E. L., Bank, L. C., & Leahy, P. G. (2020). A comparative life cycle assessment between landfilling and co-processing of waste from decommissioned Irish wind turbine blades. Journal of Cleaner Production, 277, 123321. http://dx.doi.org/10.1016/j.jclepro.2020.123321.

Nurazzi, N. M., Asyraf, M. R. M., Athiyah, S. F., Shazleen, S. S., Rafiqah, S. A., Harussani, M. M., Kamarudin, S. H., Razman, M. R., Rahmah, M., Zainudin, E. S., Ilyas, R. A., Aisyah, H. A., Norrrahim, M. N. F., Abdullah, N., Sapuan, S. M., & Khalina, A. (2021). A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers, 13(13), 2170. http://dx.doi.org/10.3390/polym13132170. PMid:34209030.

Operador Nacional do Sistema Elétrico – ONS. (2022). Dados da geração eólica. Retrieved in 2023, March 21, from http://www.ons.org.br/Paginas/resultados-da-operacao/boletim-geracao-eolica.aspx

Papadakis, N., Ramírez, C., & Reynolds, N. (2010). Designing composite wind turbine blades for disposal, recycling or reuse. In V. Goodship (Ed.), Management, recycling and reuse of waste composites (p. 443-457). Cambridge: Woodhead Publishing. http://dx.doi.org/10.1533/9781845697662.5.443.

Praciano, A. C., Cavalcante, E. S., Albiero, D., Chioderoli, C. A., & Loureiro, D. R. (2014). Avaliação da fibra de carnaúba na produção de compósitos para fabricação de pás eólica. In XLIII Congresso Brasileiro de Engenharia Agrícola (pp. 1-4). Jaboticabal: Associação Brasileira de Engenharia Agrícola. Retrieved in 2023, March 21, from http://conbea14.sbea.org.br/2014/anais.html

Ramos, M. J. Jr., & Almeida, E. S. (2021). Destinação de pás de turbinas eólicas instaladas no estado da Bahia, Brasil. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 8(19), 979-992. http://dx.doi.org/10.21438/rbgas(2021)081924.

Ramos, M. J. Jr., Medeiros, D. L., & Almeida, E. S. (2022). Wind turbine blade manufacturing: a material flow analysis. In VIII International Symposium on Innovation and Technology (pp. 288-296). Camaçari: SENAI CIMATEC. https://doi.org/10.5151/siintec2022-245225.

Rassiah, K., Ahmad, M. M. H. M., & Ali, A. (2014). Mechanical properties of laminated bamboo strips from Gigantochloa Scortechinii/polyester composites. Materials & Design, 57, 551-559. http://dx.doi.org/10.1016/j.matdes.2013.12.070.

Reis, M. M. L., Mazetto, B. M., & Silva, E. C. M. (2021). Economic analysis for implantation of an offshore wind farm in the Brazilian coast. Sustainable Energy Technologies and Assessments, 43, 100955. http://dx.doi.org/10.1016/j.seta.2020.100955.

Rosenbaum, R. K., Georgiadis, S., & Fantke, P. (2018). Uncertainty management and sensitivity analysis. In M. Z. Hauschild, R. K. Rosenbaum & S. I. Olsen (Orgs.), Life cycle assessment (pp. 271-321). Cham: Springer. http://dx.doi.org/10.1007/978-3-319-56475-3_11.

Shah, D. U., Schubel, P. J., & Clifford, M. J. (2013). Can flax replace E-glass in structural composites? A small wind turbine blade case study. Composites. Part B, Engineering, 52, 172-181. http://dx.doi.org/10.1016/j.compositesb.2013.04.027.

Silva, L. A., Abreu, M. C. S., & Diógenes, A. (2017). Gestão pública de resíduos sólidos industriais: avaliação institucional no complexo industrial e portuário do Pecém, Ceará. In XIX Encontro Internacional sobre Gestão Empresarial e Meio Ambiente (pp. 1-17). São Paulo: FEA/USP. Retrieved in 2023, March 21, from http://engemausp.submissao.com.br/19/anais/arquivos/276.pdf

Silva, R. S. S., Fo., Barbosa, V. C. S., Santana, A. L. M., Santos, E. B. C., & Amado, F. D. R. (2015). Desempenho da fibra natural de piaçava nas propriedades mecânicas de compósitos de matriz polimérica. In XX Congresso Brasileiro de Engenharia Química (pp. 8205-8212). São Paulo: Associação Brasileira de Engenharia Química. https://doi.org/10.5151/chemeng-cobeq2014-1103-20966-165215.

Summerscales, J. (2021). A review of bast fibres and their composites: part 4 ~ organisms and enzyme processes. Composites Part A, Applied Science and Manufacturing, 140, 106149. http://dx.doi.org/10.1016/j.compositesa.2020.106149.

Technische Universität Wien – TUV. (2022). About STAN. Retrieved in 2023, March 21, from https://www.stan2web.net/

Thomas, L., & Ramachandra, M. (2018). Advanced materials for wind turbine blade- a review. Materials Today: Proceedings, 5(1), 2635-2640. http://dx.doi.org/10.1016/j.matpr.2018.01.043.

United Nations Development Programme – UNDP. (2022). The SDGS in action. Retrieved in 2023, March 21, from https://www.undp.org/geneva/sustainable-development-goals

Wang, S., Wang, S., & Liu, J. (2019a). Life-cycle green-house gas emissions of onshore and offshore wind turbines. Journal of Cleaner Production, 210, 804-810. http://dx.doi.org/10.1016/j.jclepro.2018.11.031.

Wang, X., Chang, L., Shi, X., & Wang, L. (2019b). Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials, 12(9), 1386. http://dx.doi.org/10.3390/ma12091386. PMid:31035442.

Weidema, B. P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., Vadenbo, C. O., & Wernet, G. (2013). Overview and methodology (data quality guideline for the Ecoinvent Database version 3. Ecoinvent report 1(v3). St. Gallen: The Ecoinvent Centre/Swiss Centre for Life Cycle Inventories.

Widiastuti, I. (2016). Bamboo laminated composites for wind turbine blade material: a review. In Seminar Nasional dan Pameran Produk Pendidikan Vokasi ke 1 (pp. 261-265). Surakarta: Universitas Sebelas Maret.

Yang, J., Peng, C., Xiao, J., Zeng, J., & Yuan, Y. (2012). Application of videometric technique to deformation measurement for large-scale composite wind turbine blade. Applied Energy, 98, 292-300. http://dx.doi.org/10.1016/j.apenergy.2012.03.040.
 

6478ebf2a95395257025da36 gp Articles

Gest. Prod.

Share this page
Page Sections