Gestão & Produção
https://gestaoeproducao.com/article/doi/10.1590/1806-9649-2021v28e5450
Gestão & Produção
Artigo Original

Comparison of artificial neural networks learning methods to evaluate supply chain performance

Antonio Ricardo Lunardi; Francisco Rodrigues Lima Junior

Downloads: 0
Views: 51

Abstract

Abstract:: The supply chain performance evaluation is a critical activity to continuously improve operations. Literature presents several performance evaluation systems based on multi-criteria methods and artificial intelligence. Among them, the systems based on artificial neural networks (ANN) excel due to their capacity of modeling non-linear relationships between metrics and allowing adaptations to a specific environment by means of historical performance data. These systems’ accuracy depend directly on the adopted training algorithm, and no studies have been found that assess the efficiency of these algorithms when applied to supply chain performance evaluation. In this context, the present study evaluates four ANNs learning methods in order to investigate which one is the most adequate to deal with supply chain evaluation. The algorithms tested were Gradient Descendent Momentum, Levenberg-Marquardt, Quasi-Newton and Scale Conjugate Gradient. The performance metrics were extracted from SCOR®, which is a reference model used worldwide. The random sub-sampling cross-validation method was adopted to find the most adequate topological configuration for each model. A set of 80 topologies was implemented using MATLAB®. The prediction accuracy evaluation was based on the mean square error. For the four level 1 metrics considered, the Levenberg-Marquardt algorithm provided the most precise results. The results of correlation analysis and hypothesis tests reinforce the accuracy of the proposed models. Furthermore, the proposed computational models reached a prediction accuracy higher than previous approaches.

Keywords

Artificial neural networks, Supervised learning methods, Supply chain performance evaluation, SCOR® model, Multilayer perceptron

Referências

Abdi-Khanghah, M., Bemani, A., Naserzadeh, Z. & Zhang, Z. (2018). Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN. Journal of CO2 Utilization, 25, 108-119. https://doi.org/10.1016/j.jcou.2018.03.008.

Ahi, P., & Searcy, C. (2015). Assessing sustainability in the supply chain: A triple bottom line approach. Applied Mathematical Modelling, 39(10-11), 10-11. http://dx.doi.org/10.1016/j.apm.2014.10.055.

Akkawuttiwanich, P., & Yenradee, P. (2018). Fuzzy QFD approach for managing SCOR performance indicators. Computers & Industrial Engineering, 122, 189-201. http://dx.doi.org/10.1016/j.cie.2018.05.044.

Bertrand, J. W. M., & Fransoo, J. (2002). Operations management research methodologies using quantitative modeling. International Journal of Operations & Production Management, 22(2), 241-264. http://dx.doi.org/10.1108/01443570210414338.

Bilgehan, M. (2011). Comparison of ANFIS and NN models – With a study in critical buckling load estimation. Applied Soft Computing, 11(4), 3779-3791. http://dx.doi.org/10.1016/j.asoc.2011.02.011.

Brandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for managing supply chain risks. European Journal of Operational Research, 233, 299-312. http://dx.doi.org/10.1016/j.ejor.2013.09.032.

Bukhori, I. B., Widodo, K. H., & Ismoyowati, D. (2015). Evaluation of Poultry Supply Chain Performance in XYZ Slaughtering House Yogyakarta using SCOR and AHP Method. Agriculture and Agricultural Science Procedia, 3, 221-225. http://dx.doi.org/10.1016/j.aaspro.2015.01.043.

Clivillé, V., & Berrah, L. (2012). Overall performance measurement in a supply chain: towards a supplier-prime manufacturer based model. Journal of Intelligent Manufacturing, 23(6), 2459-2469. http://dx.doi.org/10.1007/s10845-011-0512-x.

Dias, L. S., & Ierapetritou, M. G. (2017). From process control to supply chain management: an overview of integrated decision making strategies. Computers & Chemical Engineering, 106, 826-835. http://dx.doi.org/10.1016/j.compchemeng.2017.02.006.

Didehkhani, H., Jassbi, J., & Pilevari, N. (2009). Assessing flexibility in supply chain using adaptive neuro fuzzy inference system. In IEEE International Conference On Industrial Engineering And Engineering Management (IEEM 2009). Hong-Kong: IEEE. http://dx.doi.org/10.1109/IEEM.2009.5373292

Dissanayake, C. K., & Cross, J. A. (2018). Systematic mechanism for identifying the relative impact of supply chain performance areas on the overall supply chain performance using SCOR Model and SEM. International Journal of Production Economics, 201, 102-115. http://dx.doi.org/10.1016/j.ijpe.2018.04.027.

Estampe, D., Lamouri, S., Paris, J., & Brahim-Djelloul, S. (2013). A framework for analysing supply chain performance evaluation models. International Journal of Production Economics, 142(2), 247-258. http://dx.doi.org/10.1016/j.ijpe.2010.11.024.

Fan, X., Zhang, S., Wang, L., Yang, Y., & Hapeshi, K. (2013). An evaluation model of supply chain performances using 5DBSC and LMBP Neural Network Algorithm. Journal of Bionics Engineering, 10(3), 383-395. http://dx.doi.org/10.1016/S1672-6529(13)60234-6.

Ganga, G. M. D., & Carpinetti, L. C. R. (2011). A fuzzy logic approach to supply chain performance management. International Journal of Production Economics, 134(1), 177-187. http://dx.doi.org/10.1016/j.ijpe.2011.06.011.

Golparvar, M., & Seifbarghy, M. (2009). Application of SCOR Model in an Oil- producing Company. Journal of Industrial Engineering, 4, 59-69.

Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International Journal of Operations & Production Management, 21(1-2), 71-87. http://dx.doi.org/10.1108/01443570110358468.

Jalalvand, F., Teimoury, E., Makui, A., Aryanezhad, M. B., & Jolai, F. (2011). A method to compare supply chains of an industry. Supply Chain Management, 16(2), 82-97. http://dx.doi.org/10.1108/13598541111115347.

Kocaoğlu, B., Gülsün, B., & Tanyaş, M. (2013). A SCOR based approach for measuring a benchmarkable supply chain performance. Journal of Intelligent Manufacturing, 24(1), 113-132. http://dx.doi.org/10.1007/s10845-011-0547-z.

Kurtgoz, Y., Karagoz, M., & Deniz, E. (2017). Biogas engine performance estimation using ANN. Engineering Science and Technology, 20(6), 1563-1570. http://dx.doi.org/10.1016/j.jestch.2017.12.010.

Lima-Junior, F. R., & Carpinetti, L. C. R (2019). Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks. International Journal of Production Economics, 212, 19-38. http://dx.doi.org/10.1016/j.ijpe.2019.02.001.

Lima-Junior, F. R., & Carpinetti, L. C. R. (2017). Quantitative models for supply chain performance evaluation: A literature review. Computers & Industrial Engineering, 113, 333-346. http://dx.doi.org/10.1016/j.cie.2017.09.022.

Liu, F. F., & Liu, Y. C. (2017). A methodology to assess the supply chain performance based on virtual-gap measures. Computers & Industrial Engineering, 110, 550-559. http://dx.doi.org/10.1016/j.cie.2017.06.010.

Maestrini, V., Luzzini, D., Maccarrone, P., & Caniato, F. (2017). Supply chain performance measurement systems: A systematic review and research agenda. International Journal of Production Economics, 183, 299-315. http://dx.doi.org/10.1016/j.ijpe.2016.11.005.

Marchand, D., & Raymond, L. (2008). Researching performance measurement systems – An information system perspective. International Journal of Operations & Production Management, 28(7), 663-686. http://dx.doi.org/10.1108/01443570810881802.

Maroufpoor, S., Shiri, J., & Maroufpoor, E. (2019). Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables. Agricultural Water Management, 215(20), 63-73. http://dx.doi.org/10.1016/j.agwat.2019.01.008.

Mathworks. (2018). Site de suporte do software MATLAB. Retrieved in 20 de agosto de 2018, from http://www.mathworks.com/help/nnet/ref/traingd.html

Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., & Zacharia, Z. G. (2001). Defining supply chain management. Journal of Business Logistics, 22(2), 1-25. http://dx.doi.org/10.1002/j.2158-1592.2001.tb00001.x.

Moharamkhani, A., Amiri, A. B., & Mina, H (2017). Supply chain performance measurement using SCOR model based on interval-valued fuzzy TOPSIS. International Journal of Logistics Systems and Management, 27(1), 115. http://dx.doi.org/10.1504/IJLSM.2017.083225.

Montgomery, D. C., & Runger, G. C. (2009). Estatística aplicada e probabilidade para engenheiros (4a ed.). Rio de Janeiro: LTC.

Mukherjee, I., & Routroy, S. (2012). Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process. Expert Systems with Applications, 39(3), 2397-2407. http://dx.doi.org/10.1016/j.eswa.2011.08.087.

Patuwo, E., Hu, M. Y., & Hung, M. S. (1993). Two-group classification using neural networks. Decision Sciences, 26, 749-779. http://dx.doi.org/10.1111/j.1540-5915.1993.tb00491.x.

Rezaee, M., Jozmaleki, M., & Valipour, M. (2018). Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange. Physica, 489, 78-93. http://dx.doi.org/10.1016/j.physa.2017.07.017.

Sellitto, M. A., Pereira, G. M., Borchardt, M., Silva, R., & Viegas, C. V. (2015). A SCOR-based model for supply chain performance measurement: application in the footwear industry. International Journal of Production Research, 53(16), 4917-4926. http://dx.doi.org/10.1080/00207543.2015.1005251.

Shafiee, M., Lotfi, F. H., & Saleh, H. (2014). Supply chain performance evaluation with data envelopment analysis and balanced scorecard approach. Applied Mathematical Modelling, 38(21-22), 5092-5112. http://dx.doi.org/10.1016/j.apm.2014.03.023.

Silva, I. N., Spati, D. H., & Flauzino, R. A. (2010). Redes Neurais Artificiais: para engenharia e ciências aplicadas. São Paulo: Artliber.

Supply Chain Council – SCC. (2012). Supply Chain Operations Reference Model, version 11.0. Supply Chain Council.

Tkác, M., & Verner, R. (2016). Artificial neural networks in business: two decades of research. Applied Soft Computing, 38, 788-804. http://dx.doi.org/10.1016/j.asoc.2015.09.040.

Tripathy, P. P., & Kumar, S. (2009). Neural network approach for food temperature prediction during solar drying. International Journal of Thermal Sciences, 48(7), 1452-1459. http://dx.doi.org/10.1016/j.ijthermalsci.2008.11.014.

Yang, J., & Jiang, H. (2012). Fuzzy evaluation on supply chains’ overall performance based on AHM and M(1,2,3). Journal of Software, 12(7), 2779-2786. http://dx.doi.org/10.4304/jsw.7.12.2779-2786.
 

6113db15a95395424e150394 gp Articles

Gest. Prod.

Share this page
Page Sections