Gestão & Produção
https://gestaoeproducao.com/article/doi/10.1590/1806-9649-2020v28e5535
Gestão & Produção
Artigo Original

A model based on FMEA and Fuzzy TOPSIS for risk prioritization in industrial processes1

Um modelo baseado em FMEA e Fuzzy TOPSIS para priorização de riscos em processos industriais

Wauires Ribeiro de Magalhães; Francisco Rodrigues Lima Junior

Downloads: 0
Views: 55

Abstract

Abstract:: FMEA is one of the most used methods to support risk analysis in business processes. Nonetheless, this method has some limitations, including the use of only three decision criteria, whose weights are not considered. With the objective of adding new features to FMEA, some studies combine it with multicriteria decision methods. This study proposes a model based on FMEA and Fuzzy TOPSIS to support risk prioritization in industrial production processes. A pilot application was performed to analyze and prioritize the risks of potential failures in a nodular iron melting and casting process. Based on the opinion of four company experts, potential failure modes were defined and assessed. The experts also chose the criteria and their respective weights. The pilot application results suggest that “fading time exceeded” and “chemical composition outside of the specified” should be treated with highest priority. The sensitivity analysis test results corroborate the relevance of these failures and demonstrate the effect of criteria weight variation. The proposed model is useful to support the formulation of actions plans focused on minimizing or eliminating priority failures. Other contributions from this study consist of: considering criteria weight; allowing the use of linguistic terms to express the decision makers’ judgments; considering the costs relating to the failures; and supporting group decisions.

Keywords

Risk assessment, FMEA, Fuzzy TOPSIS, Multicriteria decision-making

Resumo

Resumo:: O FMEA é um dos métodos mais utilizados para apoiar a análise de riscos em processos empresariais. Apesar disso, esse método apresenta algumas limitações, incluindo o uso de apenas três critérios de decisão, cujos pesos não são considerados. Com o objetivo de incrementar novos recursos ao FMEA, alguns estudos o combinam com métodos de decisão multicritério. Este estudo propõe um modelo baseado em FMEA e Fuzzy-TOPSIS para apoiar a priorização de riscos em processos de produção industrial. Uma aplicação piloto foi executada a fim de analisar e priorizar os riscos de falhas potenciais em um processo de fusão e vazamento de ferro nodular. Baseando-se na opinião de quatro especialistas da empresa, os modos de falhas potenciais foram definidos e avaliados. Os especialistas também escolheram os critérios e seus respectivos pesos. Os resultados da aplicação piloto sugerem que as falhas “tempo de fading excedido” e “composição química fora do especificado” sejam tratadas com maior prioridade. Os resultados dos testes de análise de sensibilidade ratificam a relevância destas falhas e evidenciam o efeito da variação dos pesos nos critérios. O modelo proposto é útil para apoiar a formulação de planos de ação focados na minimização ou eliminação das falhas prioritárias. Outras contribuições deste estudo consistem em: considerar os pesos dos critérios; permitir o uso de termos linguísticos para expressar os julgamentos dos decisores; considerar os custos referentes às falhas; e apoiar decisões em grupo.
 

Palavras-chave

Avaliação de riscos, FMEA, Fuzzy-TOPSIS, Tomada de Decisão multicritério

Referências

Ahmadi, M., Molana, S. M. H., & Sajadi, S. M. (2017). A hybrid FMEA-TOPSIS method for risk management, case study: Esfahan Mobarakeh Steel Company. International Journal of Process Management and Benchmarking, 7(3), 397-408. http://dx.doi.org/10.1504/IJPMB.2017.084913.

Almeida, A. T. (2013). Processo de decisão nas organizações: construindo. modelos de decisão multicritério (1. ed.). São Paulo: Atlas.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, ABNT. (2018). NBR ISO 31000. Gestão de riscos: diretrizes. Rio de Janeiro. ABNT.

Aven, T. (2011). Selective critique of risk assessments with recommendations for improving methodology and practise. Reliability Engineering & System Safety, 96(5), 509-514. http://dx.doi.org/10.1016/j.ress.2010.12.021.

Aven, T., & Renn, O. (2009). On risk defined as an event where the outcome is uncertain. Journal of Risk Research, 12(1), 1-11. http://dx.doi.org/10.1080/13669870802488883.

Banduka, N., Tadić, D., Mačužić, I., & Crnjac, M. (2018). Extended process failure mode and effect analysis (PFMEA) for the automotive industry: the FSQC-PFMEA. Advances in Production Engineering & Management, 13(2), 206-215. http://dx.doi.org/10.14743/apem2018.2.285.

Bertrand, J. W. M., & Fransoo, J. C. (2002). Operations management research methodologies using quantitative modeling. International Journal of Operations & Production Management, 22(2), 241-264. http://dx.doi.org/10.1108/01443570210414338.

Bozdag, E., Asan, U., Soyer, A., & Serdarasan, S. (2015). Risk prioritization in Failure Mode and Effects Analysis using interval type-2 fuzzy sets. Expert Systems with Applications, 42(8), 4000-4015. http://dx.doi.org/10.1016/j.eswa.2015.01.015.

Carpinetti, L. C. R. (2016). Gestão da qualidade: conceitos e técnicas (3. ed.). São Paulo: Grupo Gen-Atlas.

Certa, A., Enea, M., Galante, G. M., & La Fata, C. M. (2017). ELECTRE TRI-based approach to the failure modes classification on the basis of risk parameters: an alternative to the risk priority number. Computers & Industrial Engineering, 108, 100-110. http://dx.doi.org/10.1016/j.cie.2017.04.018.

Chang, K. H., Chang, Y. C., & Tsai, I. T. (2013). Enhancing FMEA assessment by integrating grey relational analysis and the decision making trial and evaluation laboratory approach. Engineering Failure Analysis, 31, 211-224. http://dx.doi.org/10.1016/j.engfailanal.2013.02.020.

Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1-9. http://dx.doi.org/10.1016/S0165-0114(97)00377-1.

Chen, J. K. (2017). Prioritization of corrective actions from utility viewpoint in FMEA application. Quality and Reliability Engineering International, 33(4), 883-894. http://dx.doi.org/10.1002/qre.2064.

Ekmekçioğlu, M., & Kutlu, A. C. (2012). A fuzzy hybrid approach for fuzzy process FMEA: an application to a spindle manufacturing process. International Journal of Computational Intelligence Systems, 5(4), 611-626. http://dx.doi.org/10.1080/18756891.2012.718104.

García, A., & Gilabert, E. (2011). Mapping FMEA into Bayesian networks. International Journal of Performability Engineering, 7(6), 525-537.

Guarnieri, P. (2015). Síntese dos principais critérios, métodos e subproblemas da seleção de fornecedores multicritério. Revista de Administração Contemporânea, 19(1), 1-25. http://dx.doi.org/10.1590/1982-7849rac20151109.

Hajimolaali, M., Kebriaeezadeh, A., Abdollahiasl, A., Safari, H., & Yektadoost, A. (2017). A new approach in identifying and evaluating quality risks in the pharmaceutical industry. Journal of Pharmaco Economics and Pharmaceutical Management, 3(1-2), 17-20.

Haq, I. U., Izhar, K., Anwar, S., Khan, M. T., Ahmed, B., & Maqsood, S. (2015). Fuzzy logic based failure mode and effect analysis of automotive powertrain assembly systems. Technical Journal, 20, 57-64.

Kahraman, C. (Ed.). (2008). Fuzzy multi-criteria decision making: theory and applications with recent developments (Vol. 16). Boston: Springer Science & Business Media. http://dx.doi.org/10.1007/978-0-387-76813-7.

Kutlu, A. C., & Ekmekçioğlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applications, 39(1), 61-67. http://dx.doi.org/10.1016/j.eswa.2011.06.044.

Lima, F. R., Jr., & Carpinetti, L. C. R. (2015). A comparison between TOPSIS and Fuzzy-TOPSIS methods to support multicriteria decision making for supplier selection. Gestão & Produção, 22(1), 17-34. http://dx.doi.org/10.1590/0104-530X1190.

Liu, H. C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: a literature review. Expert Systems with Applications, 40(2), 828-838. http://dx.doi.org/10.1016/j.eswa.2012.08.010.

Liu, H. C., Liu, L., Bian, Q. H., Lin, Q. L., Dong, N., & Xu, P. C. (2011). Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Systems with Applications, 38(4), 4403-4415. http://dx.doi.org/10.1016/j.eswa.2010.09.110.

Magalhães, W., & Lima, F. R., Jr. (2019). Model for risk prioritization based on FMEA and fuzzy-TOPSIS. Mendeley Data, 1. http://dx.doi.org/10.17632/d76ddk3zmk.1.

Mahmoodi, A. M., & Mirzazadeh, A. (2014). A New Analysis of Failure Models and Effects by Fuzzy Todim with using Fuzzy Time Function. International Journal of Fuzzy Logic System, 4(2), 7-21. http://dx.doi.org/10.5121/ijfls.2014.4202.

Maleki, H., & Saadat, Y. (2013). Comparison of failure mode and effects analysis by using AHP vs. REMBRANDT system. International Journal of Industrial and Systems Engineering, 14(1), 5-19. http://dx.doi.org/10.1504/IJISE.2013.052918.

Pedrycz, W., & Gomide, F. (2007). Fuzzy systems engineering: toward human-centric computing. Hoboken: John Wiley & Sons.http://dx.doi.org/10.1002/9780470168967

Pillay, A., & Wang, J. (2003). Modified failure mode and effects analysis using approximate reasoning. Reliability Engineering & System Safety, 79(1), 69-85. http://dx.doi.org/10.1016/S0951-8320(02)00179-5.

Tixier, J., Dusserre, G., Salvi, O., & Gaston, D. (2002). Review of 62 risk analysis methodologies of industrial plants. Journal of Loss Prevention in the Process Industries, 15(4), 291-303. http://dx.doi.org/10.1016/S0950-4230(02)00008-6.

Wang, C. H. (2011, december). A novel approach to conduct risk analysis of FMEA for PCB fabrication process. In 2011 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1275-1278). New York: IEEE. http://dx.doi.org/10.1109/IEEM.2011.6118121.

Xiao, N., Huang, H. Z., Li, Y., He, L., & Jin, T. (2011). Multiple failure modes analysis and weighted risk priority number evaluation in FMEA. Engineering Failure Analysis, 18(4), 1162-1170. http://dx.doi.org/10.1016/j.engfailanal.2011.02.004.

Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(1), 28-44. http://dx.doi.org/10.1109/TSMC.1973.5408575.

Zhao, H., You, J. X., & Liu, H. C. (2017). Failure mode and effect analysis using MULTIMOORA method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment. Soft Computing, 21(18), 5355-5367. http://dx.doi.org/10.1007/s00500-016-2118-x.
 

617c1f9ba953952483378274 gp Articles

Gest. Prod.

Share this page
Page Sections